π Kuartil Bawah Dan Kuartil Atas
Rumuskuartil data kelompok. Rumus kuartil bawah, kuartil tengah, dan kuartil atas pada data kelompok berbeda dari rumus kuartil data tunggal. berikut adalah rumus kuartil data kelompok: Dengan, Qi: nilai kuartil (i = 1, 2, dan 3) Tb: tepi atau batas bawah. n: banyaknya data. fk: frekuensi kumulatif sebelum Qi.
Contents1 Pengertian Kuartil Serta Rumus dan Contoh Kuartil Bawah, Kuartil Tengah dan Kuartil Pengertian Kuartil Quartil Rumus Cara Menghitung dan Mencari Contoh Pertanyaan Share thisPada artikel kali akan memberikan pembahasan mengenai segala sesuatu mengenai kuartil. Mulai dari pengertian kuartil, rumus menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta jawabannya. Baca terus pembahasan terbaru di bawah Kuartil QuartilApa itu Kuartil? Kuartil adalah nilai-nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih pada suatu data dapat diperoleh dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama sendiri terdiri atas tiga macam, yaituKuartil bawah Q1Kuartil tengah/median Q2Kuartil atas Q3Apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengan dan kuartil atas adalah sebagai berikutGari gambar di atas dapat diketahui letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu tahu kan, pengertian dari kuartil dan cara membaginya. Sekarang kita berlanjut untuk memperlajari rumus dan cara menghitung Cara Menghitung dan Mencari KuartilCara menentukan kuartil adalah sebagai data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan membagi data di bawah Q2 menjadi dua bagian yang Q3 dengan membagi data di atas Q2 menjadi dua bagian yang Pertanyaan KuartilUntuk lebih jelasnya, pelajari contoh pertanyaan berikut kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 dari data 35 50 45 30 30 25 40 45 30 3511 13 10 10 12 15 14 12JawabUrutkan data terlebih dahuluUrutkan data terlebih dahuluDemikianlah ulasan yang membahas tentang Pengertian Kuartil Serta Rumus dan Contoh Kuartil Bawah, Kuartil Tengah dan Kuartil Atas yang bisa untuk Anda pelajri. Semoga dengan adanya ulasan ini bisa membantu dan bermanfaat untuk Anda semua. Terima kasih sudah membaca ulasan ini.
Kuartilatas dan bawah juga dapat memberikan informasi yang lebih rinci mengenai sebaran data, lokasi titik data tertentu, adanya pencilan dalam data, dan perbedaan sebaran antara 50% tengah data dan titik data luar dibandingkan dengan hanya mengandalkan nilai minimum dan maksimum.
Pada kesempatan kali ini kita akan membahas tentang materi Kuartil mulai dari Pengertian, Jenis-jenis, RumusDan Contohnya. Langsung aja baca penjabarannya di bawah IsiPengertianJenis-Jenis KuartilRumus Kuartil Data TunggalKuartil untuk jumlah data ganjilKuartil untuk jumlah data genapRumus Kuartil Data KelompokPelajari Materi TerkaitKuartil adalah nilai-nilai yang membagi data yang telah diurutkan kedalam empat bagian yang sama menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih merupakan suatu bilangan yang dapat dianggap membagi data yang telah diurutkan menurut besarnya, dari yang terkecil ke yang terbesar menjadi empat sub kelompok sama kuartil Disebut juga dengan simpangan kuartil atau rentang semi pada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama KuartilKuartil terbagi menjadi 3 bagian yakni sebagai berikut ini kuartil bawah Q1kuartil tengah/median Q2kuartil atas Q3Jika suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengah, dan kuartil atasnya ialah sebagai berikut 8, 4, 3, 6, 2, 9Data setelah diurutkan 2, 3, 4, 6, 6, 8, 9Letak kuartil Q1 Q2Median Q3 2346689Dari tabel diatas dapat diketahui bahwa letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu Kuartil Data TunggalKuartil untuk jumlah data ganjilUntuk jumlah data ganjil, kuartil dapat dicari dengan rumus berikutKuartil untuk jumlah data genapSedangkan untuk jumlah data ganjil, kuartil dapat dicari dengan rumus berikutUrutkan data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan cara membagi data di bawah Q2 menjadi dua bagian yang sama Q3 dengan cara membagi data di atas Q2 menjadi dua bagian sama Kuartil Data KelompokAda tiga kuartil pada data kelompok, yakni kuartil bawah, kuartil tengah, dan kuartil kuartil data kelompok diberikan seperti persamaan di bawah i = 1 untuk kuartil bawahi = 2 untuk kuartil tengahi = 3 untuk kuartil atasTb adalah tepi bawah kelas kuartiln adalah jumlah seluruh frekuensifk adalah jumlah frekuensi sebelum kelas kuartilfi adalah frekuensi kelas kuartilp adalah panjang kelas intervalPelajari Materi TerkaitMean, Median, dan Modus Data KelompokSimpangan BakuStatistik DeskriptifTabel Z Tabel Distribusi NormalRumus Terbilang Excel 2007, 2010, 2016
Padaartikel kali ini admin akan share informasi mengenai Kuartil Atas Data Berat Badan Siswa Adalah - Sumber Berbagi Data, informasi ini disatukan berasal dari beragam sumber menjadi mohon maaf jikalau informasinya kurang lengkap atau tidak cukup tepat. Postingan kali ini juga membahas mengenai Rumus Kuartil - Pengertian, Cara Menentukan Dan Contoh Soal, Cara Menentukan Read More Β»
- Kuartil adalah data atau nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama. Dilansir dari buku Cara Mudah UN 09 Mat SMA/MA 2009 oleh Tim Literatur Media Sukses, kuartil terdiri atas 3 bagian Kuartil bawah Q1 Kuartil tengah atau median Q2 Kuartil atas Q3 kuartil Baca juga Cara Menentukan Kuartil Pada Ukuran Penyebaran Data Desil Desil adalah data atau nilai yang membagi data yang telah diurutkan menjadi sepuluh bagian yang sama. Secara umum letak desil ke-i adalah dengan i = 1,2,...,9 Baca juga Rumus Jangkauan, Kuartil, Simpangan Rata-rata, Variansi, dan Deviasi Standar pada Ukuran Penyebaran Data Berkelompok Contoh soal 1 Data gol yang dicetak tim A adalah sebagai berikut 1,2,0,0,3,2,1,1,2 Kuartil bawah dan kuartil atas dari data tersebut adalah .... A. Β½ dan 1B. Β½ dan 2C. 0 dan 2D. 1 dan 2E. 0 dan 3
Kuartiladalah nilai yang membagi data yang berurutan menjadi empat bagian yang sama banyak. Karena data terbagi menjadi empat bagian yang sama, artinya terdapat tiga nilai kuartil, yaitu kuartil bawah (Q1), kuartil tengah (Q2), dan kuartil atas (Q3Β). Nah, terus apa hubungannya kuartil dengan simpangan kuartil?
Hai Quipperian, saat belajar Matematika pasti kamu sudah mengenal istilah median, kan? Median merupakan nilai tengah dari kumpulan data. Lalu, bagaimana jika kamu diminta untuk menentukan mediannya median? Hayo, ribet kan? Tenang, mediannya median itu biasa dikenal dengan istilah kuartil. Apakah kamu pernah mendengar istilah kuartil? Jika belum, kali ini Quipper Blog akan mengajakmu untuk belajar kuartil data tunggal dan berkelompok. Lalu, apa sebenarnya kuartil data tunggal dan berkelompok itu? Yuk, simak selengkapnya! Pengertian Kuartil Pengertian kuartil hampir sama dengan median. Hanya saja, pada kuartil pembagianya adalah empat. Kuartil adalah suatu nilai yang bisa membagi kumpulan data menjadi empat bagian sama besar. Syarat untuk mendapatkan kuartil ini adalah data harus diurutkan terlebih dahulu. Oleh karena membagi data menjadi empat bagian sama besar, maka setiap bagian memilki persentase 25%. Perhatikan ilustrasi berikut. Dari gambar di atas, muncul istilah Q1, Q2, Q3, kan? Memangnya apa arti istilah-istilah tersebut? Q1 disebut juga kuartil atas, yaitu kuartil yang membagi 25% urutan data terkecil, Q2 disebut juga kuartil tengah atau median, yaitu kuartil yang membagi 50% data sama besar, dan Q3 disebut juga kuartil bawah, yaitu kuartil yang membagi 25% urutan data terbesar. Lalu, apa yang dimaksud kuartil data tunggal dan berkelompok? Pengertian Kuartil Data Tunggal Data tunggal adalah data yang disusun secara tunggal, tidak dalam bentuk interval. Kuartil data tunggal adalah suatu nilai yang membagi data-data tunggal menjadi empat bagian sama besar. Contoh data tunggal adalah 1, 1, 2, 2, 3, 3, 4, 4, dan seterusnya. Pengertian Kuartil Data Berkelompok Data berkelompok adalah kumpulan data yang ditulis dalam bentuk interval. Kuartil data berkelompok adalah suatu nilai yang membagi data-data interval menjadi empat bagian sama besar. Memangnya, apa sih tujuan dari ditentukannya kuartil? Misalnya pada kasus e-commerce, kuartil ini bisa dijadikan indikator untuk menentukan 25% penjual dengan rating tertinggi, 25% penjual dengan pendapatan terbesar, atau sebaliknya. Rumus Kuartil Rumus kuartil data tunggal berbeda dengan data berkelompok. Mengingat, penyajian kedua jenis data juga berbeda. Khusus untuk data berkelompok ada beberapa elemen yang harus kamu perhatikan. Agar kamu semakin paham, simak rumus berikut. Rumus Kuartil Data Tunggal Sebelum menentukan kuartil data tunggal, kamu harus tahu dulu letak kuartil yang kamu cari. Adapun letak kuartil suatu data tunggal bisa kamu cari dengan rumus di bawah ini, ya. Dengan Qi = kuartil ke-i; i = 1, 2, 3 bergantung letak kuartil yang dicari; dan n = banyaknya data. Letak kuartil menandakan urutan data tempat kuartil itu sendiri. Artinya, setelah tahu letaknya, kamu bisa menentukan kuartilnya sesuai urutan yang diperoleh. Misalnya, letak kuartil ke-1 adalah 4, maka data yang berada di urutan 4 itulah yang dinamakan kuartil ke-1. Perhatikan contoh, ya. Berapakah kuartil ke-3 dari kumpulan data-data berikut. 2, 2, 2, 1, 1, 1, 5, 5, 3, 3, 4, 4, 9, 9, 2, 1, 2, 3, 8 Pembahasan Pertama, urutkan dahulu datanya. 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 8, 9, 9 β banyaknya data n = 19 Selanjutnya, tentukan letak kuartil ke-3 dengan rumus berikut. Dari perhitungan di atas, diperoleh bahwa kuartil ke-3 terletak di data urutan ke-15, yaitu 5. Jadi, kuartil ke-3nya adalah 5. Rumus Kuartil Data Berkelompok Rumus kuartil data berkelompok tentu tidak sesederhana data tunggal. Ada beberapa elemen yang harus kamu tentukan sebelumnya, seperti letak kuartil yang dicari, frekuensi kumulatif data, tepi bawah kuartil yang dicari, dan interval kelas. Adapun langkah menentukan kuartil data berkelompok adalah sebagai berikut. Mula-mula, tentukan dahulu letak kuartilnya Dengan Qi = kuartil ke-i i = letak kuartil ke-i; dan n = banyaknya data. Setelah tahu letak kuartilnya, tentukan kuartil yang dimaksud dengan rumus berikut. Dengan Qi = kuartil ke-i; Tbi = tepi bawah kelas kuartil ke-i; p = interval kelas; fk = frekuensi kumulatif sebelum kuartil ke-i; f = frekuensi kuartil ke-i; n = banyaknya data; dan i = posisi kuartil yang dicari 1 β 3. Untuk lebih lengkapnya, perhatikan contoh berikut ini. Diketahui tabel berat badan siswa SD Kelas 1 β 6 SD Mulia Jaya. Berat BadanFrekuensi f 25 β 283029 β 322233 β 364537 β 4016Jumlah113 Tentukan kuartil ke-1 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Berat badanFrekuensi f Frekuensi kumulatif fk25 β 28303029 β 32225233 β 36459737 β 4016113Jumlah113 Selanjutnya, tentukan letak kuartil ke-1. Oleh karena letak kuartilnya pertamanya 28,25, maka kuartil tersebut berada di rentang berat badan 25 β 28. Lalu, tentukan tepi bawah kuartil ke-1 dan panjang data interval. Tb1 = 25 β 0,5 = 24,5 p = panjang data = 4. Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-1 dari data berat badan tersebut adalah 28,26. Contoh Soal Untuk mengasah pemahamanmu tentang kuartil data tunggal dan berkelompok, yuk simak contoh soal berikut ini. Contoh Soal 1 Diketahui data-data berikut. 7, 3, 2, 4, 5, 2, 5, 4, 1, 3, 8, 7, 4, 7, 9 Tentukan perbandingan kuartil ke-1 dan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, urutkan dahulu datanya seperti berikut. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 7, 8, 9 β n = 15 Selanjutnya, tentukan letak kuartil ke-1. Kuartil ke-1 berada di urutan data nomor 4, yaitu 3. Selanjutnya, tentukan letak kuartil ke-3. Kuartil ke-3 terletak di urutan data nomor 12, yaitu 7. Jadi, perbandingan kuartil ke-1 dan kuartil ke-3 adalah 3 7. Contoh Soal 2 Bu Abel membagikan daftar perolehan nilai Matematika SMP Nusa Bangsa Kelas VIIA seperti berikut. Nilai MatematikaBanyak siswa65107257988212 Siswa dinyatakan lulus jika memiliki nilai lebih besar atau sama dengan median. Berapakah banyaknya siswa yang tidak lulus? Pembahasan Diketahui n = banyaknya data = 35 Untuk menentukan jumlah siswa yang tidak lulus, kamu harus mencari dulu nilai mediannya Q2. Meskipun disajikan dalam bentuk tabel, tapi data di atas termasuk data tunggal, ya. Hal itu karena penulisan nilainya tidak dijadikan interval. Adapun median data di atas adalah sebagai berikut. Kuartil kedua atau median berada di urutan data nomor 18, yaitu 79. Artinya, siswa dikatakan lulus jika nilai minimalnya 79. Dengan demikian, banyaknya siswa yang tidak lulus adalah 15. Jadi, jumlah siswa yang tidak lulus adalah 15. Contoh Soal 3 Dalam rangka memperingati Hari Pendidikan Nasional, Dinas Pendidikan Kota Y mengadakan Seminar Pendidikan pada 60 orang dengan rentang usia yang berbeda-beda seperti berikut. Rentang usia thJumlah peserta16 β 20421 β 251026 β 30631 β 351536 β 40841 β 451446 β 503 Tentukan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Rentang usia thJumlah pesertaFrekuensi kumulatif fk16 β 204421 β 25101426 β 3062031 β 35153536 β 4084341 β 45145746 β 50360 Banyaknya data n = 60. Selanjutnya, tentukan letak kuartil ke-3. Oleh karena letak kuartilnya pertamanya 45, maka kuartil tersebut berada di rentang usia 41 β 45. Lalu, tentukan tepi bawah kuartil ke-3 dan panjang data interval. Tb3 = 41 β 0,5 = 40,5 p = panjang data = 5 Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-3 dari data berat badan tersebut adalah 41,21. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
RumusKuartil Data Tunggal. Kuartil Bawah Q1 = ΒΌ (n+1) Kuartil Tengah Q2 = Β½ (n+1) Kuartil Atas Q3 = ΒΎ (n+1) Sumber rumus : dikutip mathsteacher.com.au. Contoh Cara Mencari Kuartil Data Tunggal. Berikut ini adalah perhitungan dan contoh soal atau contoh kasus untuk mencari Kuartil Data Tunggal. 1. Kuartil data tunggal dengan jumlah data ganjil
jeswinthomas - kuartil bawahKali ini kita akan sama-sama belajar mengenai contoh cara menghitung kuartil bawah, tengah, dan atas. Kuartil bawah atau yang juga disebut dengan kuartil pertama adalah sebuah penanda bahwa data pada kuartil tersebut berada 25% dari bawah pada kelompok data. Sedangkan, yang dimaksud dengan kuartil adalah nilai pembatas pada data terurut yang dibagi menjadi empat bagian sama banyak. Terdapat tiga jenis nilai kuartil, yaitu kuartil bawah Q1, tengah Q2, dan atas Q3.Nilai kuartil bawah, tengah, dan atas pada data tunggal dapat diperoleh dengan membagi data terurut menjadi dua sama banyak sehingga dapat diperoleh nilai kuartil tengah Q1. Selanjutnya, setiap bagian dari dua bagian data terbagi tersebut dibagi lagi menjadi dua sama Soal Cara Menghitung Kuartil Bawah, Tengah, dan AtasSeperti dikutip dari buku Kompetensi Matematika 2, Johanes S. Pd, Yudhistira, 2006, kuartil bawah didapatkan dari 1/2 bagian data terurut pertama, sedangkan dari 1/2 bagian data terurut lainnya akan diperoleh kuartil atas Q3. Cara Menentukan Kuartil Bawah untuk Data TunggalBerikut contoh untuk menentukan nilai kuartil 40 15 25 30 10 55 35 45 50 20 6010 15 20 25 30 35 40 45 50 55 60Q2 atau kuartal median= 35Q3 atau kuartal bawah= 502. 15 20 25 30 35 40 45 50 55Cara Menghitung Kuartil Tengah Data KelompokBerikut contoh soal untuk menghitung kuartil tengah. Kuartil ke-2 dari data berat badan yang ditunjukkan pada histogram di atas adalah β¦Ketahui lebih dulu banyaknya data pada penyajian histogram dengan cara menjumlahkan semua nilai = 2 + 6 + 13 + 10 + 9 + 7 + 3Letak kuartil ke-2 Q2 atau kuartil tengah berada di antara data ke-2/4 Γ 50 data ke-2/4 Γ 50 + 1 yaitu antara data ke-25 dan data ke-26 kelas dengan titik tengah 52. Batas bawah kelas dengan kuartil tengah adalah Tb = 52 + 47 2 = 49,5. Frekuensi kelas kuartil tengah adalah fQ2 = 9 dan frekuensi komulatif kurang dari kelas kuartil tengah adalah fkk = 21. Panjang kelas pada penyajian data kelompok bentuk histogram tersebut adalah β = 39,5 β 34,5 = 44,5 β 39,5 = β¦ = menghitung kuartil tengahQb = Tb + 2/4n - fkk fQ2 x l = 49,5 + 1/ - 21 10 x 5Jadi, kuartil ke-2 Q2 dari data berat badan yang ditunjukkan pada histogram di atas adalah 51,5 Menghitung Kuartil AtasContoh soal menghitung kuartil atas adalahKuartil atas data dalam tabel tersebut adalah β¦.Ketahui banyaknya data dengan menjumlahkan seluruh = 3 + 6 + 10 + 12 + 15 + 6 + 4Dari banyak data tersebut dapat diketahui letak nilai kuartil atas Q3. Nilai Q3 terletak antara data ke-3/4Γ56 [data ke-42] dan data ke-3/4Γ56 + 1 [data ke-43] yaitu interval kelas 65β batas bawah kelas Q3 adalah Tb = 64,5 dengan frekuensi kelas kuartil atas adalah f Q3 = 12. Dengan frekuensi komulatif kurang dari kelas kuartil atas adalah fkk = 3 + 6 + 10 + 12 = 31. Panjang kelas pada penyajian tabel data kelompok adalah β = 49,5 β 44,5 = 54,5 β 49,5 = β¦ = menghitung kuartil atas, yaituQb = Tb + 3/4n - fkk fQ3 x l = 64,5 + 3/ - 31 15 x 5Jadi, kuartil atas data dalam tabel tersebut adalah 681/ Itu tadi penjelasan mengenai contoh soal cara menghitung kuartil bawah, tengah, dan atas dari berbagai macam variasi data. DNR
Jawabanpaling sesuai dengan pertanyaan Kuartil bawah (Q1), kuartil tengah (Q2), dan kurtil atas (Q3) dari data 5,3,2,7,8,6,5,1,5,
Contoh cara menghitung kuartil pada data tunggal, misalnya terdapat sepuluh data terurut 3, 4, 5, 6, 8, 8, 8, 9, 9, dan 10. Nilai kuartil tengah Q2 berada di antara data ke-5 dan data ke-6, sehingga nilai kuartil tengah adalah Q2=8+8 2 = 8. Nilai kuartil tengah membagi data menjadi dua sama banyak. Setengah bagian pertama dari data terutut tersebut adalah 3, 4, 5, 6, 8, dan 8 sementara setengah data terurut lainnya adalah 8, 8, 9, 9, dan 10. Pada setengah bagian pertama memuat nilai kuarti bawah Q1, sedangkan setengah bagian kedua memuat nilai kuarti atas Q3. Dari setengah bagian data pertama memuat nilai kuarti bawah Q1. Di mana, nilai kuartil pada contoh data yang diberikan terdapat pada data ke-3 yaitu nilai yang membagi data menjadi dua sama banyak. Sehingga nilai kuartil bawah dari data tersebut adalah Q1= 5. Selanjutnya, setengah bagian kedua dari dari data terurut yaitu 8, 8, 9, 9, dan 10 memuat nilai kuarti atas Q3. Nilai yang membagi dua data tersebut sama banyak juga terdapat pada urutan data ke-3 dari setengah bagian data kedua atau data ke-8 dari semua data. Sehingga kuartil atas dari data adalah Q3= 9. Dengan demikian diperoleh nilai untuk kuartil bawah, tengah, dan atas dari data terurut 3, 4, 5, 6, 8, 8, 8, 9, 9, dan 10 adalah Q1= 6, Q2 = 8, dan Q3 = 9. Apa itu nilai kuartil? Bagaimana cara menghitung kuartil dari data kelompok? Bagaimana bentuk-bentuk contoh soal kuartil? Sobat idschool dapat mencari tahu jawabannya melalui ulasan cara menghitung kuartil atas, tengah, dan bawah melalui ulasan-ulasan berikut. Table of Contents Apa Itu Nilai Kuartil? Rumus Kuartil Data Kelompok Soal 1 β Cara Menghitung Kuartil Atas Soal 2 β Cara Menghitung Kuartil dari Tabel Data Kelompok Soal 3 β Cara Menghitung Kuartil Tengah dari Histogram Data Kelompok Soal 4 β Mencari Frekuensi Kelas Kuartil dari Tabel Data Kelompok Soal 5 β Cara Menghitung Kuartil dan Frekuensi Kelas Kuartil Soal 6 β Variasi Bentuk Soal Cara Menghitung Kuartil Soal 7 β Variasi Bentuk Soal Cara Menghitung Kuartil Apa Itu Nilai Kuartil? Kuartil adalah nilai pembatas pada data terurut yang dibagi menjadi empat bagian sama banyak. Ada tiga nilai kuartil yang terdiri dari kuartil bawah Q1, tengah Q2, dan atas Q3. Nilai kuartil bawah, tengah, dan atas pada data tunggal dapat diperoleh dengan membagi data terurut menjadi dua sama banyak sehingga dapat diperoleh nilai kuartil tengah Q1. Selanjutnya, setiap bagian dari dua bagian data terbagi tersebut dibagi lagi menjadi dua sama banyak. Dari 1/2 bagian data terurut pertama akan diperoleh nilai kuartil bawah Q1, sedangkan dari 1/2 bagian data terurut lainnya akan diperoleh kuartil atas Q3. Seperti yang ditunjukkan pada contoh pada awal pembahasan pada bagian awal paragraf. Pada data kelompok, nilai kuartil berada pada suatu interval kelas, sehingga membutuhkan suatu cara menghitung kuartil untuk data kelompok. Cara menghitung kuartil atas, tengah, dan bawah pada data kelompok dapat menggunakan rumus kuartil data kelompok. Baca Juga Cara Menghitung Median Data Kelompok +Contoh Soal dan Pembahasannya Rumus Kuartil Data Kelompok Pada penyajian data kelompok, nilai kuartil terletak pada suatu interval kelas. Di mana, nilainya dapat ditentukan dengan bantuan rumus kuartil data kelompok. Q1 kuartil bawah nilai yang menjadi batas dari data terurut yang paling rendah sampai 1/4 bagian data terurut pertama. Q2 kuartil tengah nilai yang membagi banyak data menjadi dua bagian yang sama banyak. Nilai kuartil tengah Q2 disebut juga sebagai median yaitu nilai yang terletak antara dua bagian dari data terurut. Q3kuatil atas adalah nilai pembatas antara 3/4 data terurut pertama dengan 1/4 data terakhir. Rumus kuartil bawah, tengah, dan atas yang dapat digunakan paca cara menghitung kuartil data kelompok sesuai dengan persamaan berikut. Baca Juga Rumus Mean Median Modus pada Data Tunggal Selanjutnya sobat idschool dapat mempelajari bagaimana penggunaan rumus dan cara menghitung kuartil data kelompok dengan berbagai bentuk soal. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana cara menghitung kuartil. Sobat idschool dapat menggunakan pembahasan cara menghitung kuartil tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Tabel berikut menyajikan data berat badan sekelompok siswa. Kuartil atas data dalam tabel tersebut adalah β¦.A. 664/6B. 665/6C. 671/6D. 675/6E. 681/6 PembahasanPertama, sobat idschool perlu mengetahui banyak data dari penyajian data yang diberikan yaitu dengan menjumlahkan seluruh frekuensinya. Banyak data nn = 3 + 6 + 10 + 12 + 15 + 6 + 4n = 56 Dari banyak data tersebut dapat diketahui letak nilai kuartil atas Q3. Nilai Q3 terletak antara data ke-3/4Γ56 [data ke-42] dan data ke-3/4Γ56 + 1 [data ke-43] yaitu interval kelas 65β69. Nilai batas bawah kelas Q3 adalah Tb = 64,5 dengan frekuensi kelas kuartil atas adalah f Q3 = 12. Dengan frekuensi komulatif kurang dari kelas kuartil atas adalah fkk = 3 + 6 + 10 + 12 = 31. Panjang kelas pada penyajian tabel data kelompok adalah β = 49,5 β 44,5 = 54,5 β 49,5 = β¦ = 5. Cara menghitung kuartil atas dapat dilakukan seperti pada langkah berikut. Jadi, kuartil atas data dalam tabel tersebut adalah 681/6. Jawaban E Soal 2 β Cara Menghitung Kuartil dari Tabel Data Kelompok PembahasanPertama, hitung banyak data dari penyajian data yang diberikan dengan cara menjumlahkan semua nilai f frekuensi. Banyak data nn = 4 + 10 + 18 + 24 + 16 + 8n = 80 Letak nilai kuartil ketiga Q3 terdapat di antara data keβ3/4 Γ 80 data keβ3/4 Γ 80 + 1 yaitu antara data ke-60 dan data ke-61 interval kelas 63 β 67. Sehingga dapat diketahui bahwa batas bawah kelas Q3 Tb = 62,5; frekuensi kelas Q3 fQ3 = 16; dan frekuensi komulatif kurang dari kelas Q3 fkk = 56. Di mana panjag kelas pada penyajian data kelompok tersebut adalah β = 47,5 β 42,5 = 52,5 β 47,5 = β¦ = 5. Cara menghitung kuartil atas atau nilai kuartil ketiga Q3 Jadi, kuartil ketiga dari data yang disajikan dalam histogram berikut adalah 63,75 Jawaban B Baca Juga Ukuran Penyebaran Data β Jangkauan, Hamparan, dan Kuartil Soal 3 β Cara Menghitung Kuartil Tengah dari Histogram Data Kelompok Perhatikan data kelompok pada histogram berikut! Kuartil ke-2 dari data berat badan yang ditunjukkan pada histogram di atas adalah β¦.A. 50,5 kgB. 51,5 kgC. 52,5 kgD. 53,5 kgE. 54,5 kg PembahasanPertama, sobat idschool perlu mengetahui banyak data pada penyajian histogram dengan cara menjumlahkan semua nilai frekuensinya. Banyak datan = 2 + 6 + 13 + 10 + 9 + 7 + 3n = 50 Letak kuartil ke-2 Q2 atau kuartil tengah berada di antara data ke-2/4 Γ 50 data ke-2/4 Γ 50 + 1 yaitu anatar data ke-25 dan data ke-26 kelas dengan titik tengah 52. Sehingga dapat diperoleh batas bawah kelas dengan kuartil tengah adalah Tb = 52 + 47 2 = 49,5. Frekuensi kelas kuartil tengah adalah fQ2 = 9 dan frekuensi komulatif kurang dari kelas kuartil tengah adalah fkk = 21. Panjang kelas pada penyajian data kelompok bentuk histogram tersebut adalah β = 39,5 β 34,5 = 44,5 β 39,5 = β¦. = 5. Cara menghitung kuartil tengah Jadi, kuartil ke-2 Q2 dari data berat badan yang ditunjukkan pada histogram di atas adalah 51,5 kg Jawaban B Soal 4 β Mencari Frekuensi Kelas Kuartil dari Tabel Data Kelompok Baca Juga Cara Menghitung Desil dan Persentil Data Kelompok PembahasanDiketahui nilai kuartil atas adalah 49,25 sehingga letak nilai kuartil atas berada di interval kelas 44 β 49. Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi berikut. Banyak data n = 4 + 6 + 6 + 10 + k + 8 + 4 = 38 + k Nilai kuartil atas Q3 = 49,25 Batas bawah kelas kuatil Q3 Tb = 43,5 Frekuensi komulatif kurang dari kelas Q3 fkk = 26 Frekuensi kelas kuartil atas fQ3 = k Panjang kelas β = 25,5 β 19,5 = 31,5 β 25,5 = β¦ = 6 Mencari nilai kQ3 = Tb + β Γ 3/4Γn β fkk fQ3 49,25 = 43,5 + 6Γ3/4Γ38 + k β 26 k49,25 β 43,5 = 6Γ3/4Γ38 + k β 26 k5,75k = 9/2Γ38 + 9/2k β 6Γ265,75k β 9/2k =171 β 1565,75k β 9/2k = 151,25k = 15k = 15 1,25 = 12 Sehingga diperoleh nilai k = 12 Jawaban D Soal 5 β Cara Menghitung Kuartil dan Frekuensi Kelas Kuartil Perhatikan penyajian data kelompok dalam bentuk histogram berikut! Jika kuartil bawah dari data nilai ulangan harian di atas adalah 73,5 maka nilai q = β¦.A. 10B. 11C. 12D. 13E. 14 PembahasanDiketahui nilai kuartil bawah adalah Q1 = 73,5 sehingga nilai kuartil terletak pada kelas dengan titik tengah 75. Dengan demikian dapat diperoleh nilai-nilai seperti berikut Banyak data n = 3 + 5 + q + 9 + 8 + 5 = 30 + q Batas bawah kelas letak Q1 Tb = 75 + 70 2 = 72,5 Frekuensi kelas kuartil bawah fQ1 = q Frekuensi komulatif kurang dari kelas kuartil bawah Q1 fkk = 8 Cara menghitung frekuensi kuartil bawah Q1 Jawaban A Baca Juga Penyajian Data dalam Bentuk Ogive Soal 6 β Variasi Bentuk Soal Cara Menghitung Kuartil Diketahui 10 bilangan genap berurutan yang nilainya berbeda. Jika kuartil pertama bilangan-bilangan tersebut adalah 32 maka mediannya adalah β¦.A. 34B. 35C. 36D. 37E. 38 PembahasanMisalkan nilai 10 bilangan genap berurutan tersebut adalah x1, x2, . . ., dan x10. Letak median atau kuartil kedua Q2 berada di antara bilangan e dan f. Sedangkan kuartil bawah dari data sepuluh bilangan tersebut adalah nilai x3 = 32. Diketahui bahwa sepuluh bilangan tersebut merupakan bilangan genap berurutan yang nilainya berbeda. Sehingga, nilai x5 dan x6 berturut-turut adalah 36 dan 38. Jadi, nilai mediannya adalah Q2 = 36 + 38 2 = 37. Jawaban D Soal 7 β Variasi Bentuk Soal Cara Menghitung Kuartil Sepuluh siswa mengikuti suatu tes. Jika nilai tes tersebut memiliki jangkauan 45 dengan nilai terendah 50 dan kuartil ketiga 90 maka tiga nilai tertinggi siswa tersebut yang paling mungkin adalah β¦.A. 90; 95; dan 100B. 85; 90; dan 95C. 90; 90; dan 100D. 90; 90; dan 95E. 85; 95; dan 95 PembahasanMisalkan data terurut untuk nilai kesepuluh siswa yang mengikuti tes adalah x1, x2, β¦, dan x10. Sehingga, berdasarkan keterangan pada soal dapat diperoleh informasi-informasi seperti berikut. Jangkauan x10 β x1 = 45 Nilai terendah x1 = 50 Kuartil ketiga Q3 = 90 Mencari nilai tertinggi x10 dari persamaan x10 β x1 = 45x10 β 50 = 45x10 = 45 + 50 = 95 Diketahui bahwa kuartil ketiga Q3 atau kuarti atas dari data terurut x1, x2, β¦, dan x10 adalah Q3 = x8 = 90. Jadi, tiga nilai tertinggi siswa tersebut yang paling mungkin adalah 90; 90; dan 95. Jawaban D Demikanlah tadi ulasan cara menghitung kuartil atas, tengah, dan bawah. Terima kasih sudah mengunjungi halaman cara menghitung kuartil dari idschooldotnet, semoga bermanfaat! Baca Juga Bentuk-Bentuk Soal pada TPS UTBK SBMPTN
.